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Abstract: A novel back-contacted solar cell based on a submicron copper indium gallium 
(di)selenide (CIGS) absorber is proposed and optically investigated. First, charge carrier 
collection feasibility is studied by band diagram analysis. Then, two back-contacted 
configurations are suggested and optimized for maximum current production. The results are 
compared with a reference front/back-contacted CIGS solar cell with a 750-nm-thick 
absorber. Current density production of 38.84 mA/cm2 is predicted according to our 
simulations for a realistic front-side texturing. This shows more than 38% improvement in 
optical performance compared to the reference cell and only 7.7% deviation from the 
theoretical Green absorption benchmark. 

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction 
Reducing the absorber thickness of copper indium gallium (di)selenide (CIGS) solar cells to 
values below 1 μm is the key to more industrially viable thin-film solar cells [1-3]. The 
resulting optical losses can be compensated by advanced light management techniques. These 
techniques include: (i) light in-coupling [4-7], (ii) light scattering [8-10] and (iii) light 
trapping [3,11]. Even though the performance of ultra-thin CIGS solar cells can be improved 
by the abovementioned methods, there are still more challenges to overcome in this topic. 
Firstly, the parasitic absorption in the front layers of a submicron CIGS solar cell contributes 
to more than 10% of optical losses [4]. Secondly, for CIGS devices deposited on thin flexible 
foils [12], the metallic grid at the front side of a front/back-contacted (FBC) solar cell, blocks 
a significant part of the incident light from entering the cell (optical shading) [13]. 

In an interdigitated back-contacted (IBC) solar cell, both electron (e) and hole (h) contacts 
(e-contact and h-contact) are alternatively located at the rear side of the absorber, as 
demonstrated in a number of high efficiency c-Si IBC solar cells [14-22]. This way, the 
optical shading and parasitic absorption are eliminated and the high energy photons can reach 
the absorber bulk and contribute to charge carrier generation. In this work, we introduce an 
IBC CIGS solar cell with a submicron absorber thickness. The collection feasibility of both 
charge carriers is studied by band diagram analysis. Two light in-coupling configurations, 
namely, high aspect ratio front textures (see Fig. 1) and double-layer antireflection coating 
(ARC, see Fig. 2) will be investigated by means of rigorous three-dimensional (3D) optical 
simulations. In both configurations, the e-contact dimensions are optimized for maximum 
current generation. This study provides guidelines to CIGS research community about IBC 
CIGS solar cells, which to our knowledge has not been studied so far. 
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2. Modelling platform 
Sentaurus TCAD simulator [14,23,24] was used to compute the band diagram of the e- and h-
contacts in equilibrium conditions. The physical parameters of each material are listed in 
Table 1. 

Table 1. The model parameters used for band diagram modelling in TCAD software. 
Density of states of electrons and holes are indicated with eDOS and hDOS, respectively. 

Subscripts A and D stand for acceptor and donor, respectively. 

Layer parameter Symbol (unit) CIGS [25] ZnO:Ga (GZO) [26] Al2O3 [27] 
Bandgap Eg (eV) 1-1.14 (Ga-dep) 3.25 6.4 
Relative 
permittivity 

εr 13.6 3.85 2.7 

eDOS Nc (cm−3) 6.8 × 1017 3.7 × 1018 - 
hDOS Nv (cm−3) 1.5 × 1019 - - 
Doping NA or ND (cm−3) 1 × 1016 (A) 3.2 × 1019 - 

The optical performance of the solar cell was modelled by using a 3D Maxwell’s equation 
solver, called Ansys HFSS. This finite element method-based tool allows for calculating the 
absorptance (A) and reflectance (R) spectra of complex thin-film structures with sub-
wavelength features [4,28-31]. The structure is discretized (meshed) by tetrahedrons and the 
Maxwell’s equations are iteratively solved at each frequency until the solution reaches an 
acceptable level of convergence [31]. The optical constants of CIGS [28,32], Mo [28,33], 
ZnO:Ga (GZO) [26], MgF2 [34] and Al2O3 [27] are used as modelling inputs. Master and 
slave boundary conditions are deployed to model the periodic structure. More details about 
the modelling scheme can be found in [4,28]. The current density generated in the absorber 
(Jph-CIGS) or dissipated in the i-th layer of the structure (Jph-i) was calculated by integrating the 
product of wavelength-dependent absorptance spectrum (Ai) with AM1.5G photon flux (Φ(λ) 
[35]): 

 
1200

300
( ) ( )ph i iJ q A dλ λ λ− = Φ  (1) 

where q is the elementary charge and i refers to the i-th different layer. Here, Jph-CIGS 
represents the short circuit current density (Jsc) of the solar cell, assuming full charge carrier 
collection. It should be noted that both transverse electric (TE) and transverse magnetic (TM) 
polarizations are considered in the simulations and each absorptance spectrum is the average 
between the related spectra obtained from the two polarizations. 

Green absorption limit [36] is used as a benchmark with which the optical performance is 
compared. This parameter describes the maximum absorption spectrum of a randomly 
textured slab of a material (here, CIGS) for which (i) front reflectance is completely 
quenched, (ii) light propagating in it is completely randomized, and (iii) rear internal 
reflectance caused by a lossless metallic reflector is maximized. The Green limit is calculated 
as: 
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in which α is the absorption coefficient, d is thickness and n is refractive index of the 
absorbing material. 

The proposed solar cell structures are compared to a reference FBC cell with a CIGS 
thickness of 750 nm. From the light-facing window layers to the rear contact, the cell 
structure comprises the following layers: ZnO:Al / i-ZnO / CdS / CIGS / Mo. More details 
about the optical modelling of the reference cell can be found in [4] and [28]. 

It is known that the number of the absorbed photons is directly related to the absorber 
volume [37,38]. Therefore, the amount of absorber material in all of the configurations in this 
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prevents minority charge carriers’ recombination at the front side. At the rear side, high 
doping concentration makes GZO a degenerate semiconductor with a work function of about 
4.26 eV. The resulting band bending inside CIGS forms a p-n junction in favor of electron 
collection and also hole repulsion. At the h-contact (Fig. 3(c)), Mo work-function (4.6 eV) 
enables an ohmic contact for CIGS majority carriers (holes) and therefore, their collection. 

 

Fig. 3. a) Simplified layer stack of the e- and h-contacts in the envisioned IBC solar cell. From 
top to bottom: MgF2, Al2O3, CIGS, GZO (e-contact on left-hand side) and Mo (h-contact on 
the right-hand side). Band diagrams in equilibrium b) and c) refer to e- and h-contact, 
respectively. EF, Ev and Ec are Fermi, valance band edge and conduction band edge energies, 
respectively. 

3.2 IBC solar cell with antireflective front textures 

Figure 1 shows a visual rendering of the IBC CIGS solar cell. The presence of steep grooves 
with height to width ratio of 2 at the front side promotes light in-coupling and, hence, 
minimal reflection losses. As mentioned earlier, a thin layer of Al2O3 improves the chemical 
and electrical passivation of the front surface. 

The height and width of GZO (HTCO and WTCO, respectively) were optimized for the best 
current density production. WTCO was varied between 400 and 1000 nm in steps of 100 nm. 
HTCO took values between 240 (30 nm thicker than Mo to ensure a gap between Mo and Ag) 
and 330 nm in steps of 30 nm. Figure 4(a) shows Jph-CIGS as a function of these parameters. 
Maximal Jph-CIGS can be obtained for WTCO > 800 nm and HTCO > 290 nm. Even though the 
optical performance might be better for larger WTCO, we limited its range to values below the 
diffusion length to ensure good electrical performance as well. As a result, we selected 1000 
nm and 320 nm as the optimal values for WTCO and HTCO, respectively. The absorptance and 
reflectance (1-R) spectra of the resulting configuration compared to the absorptance spectrum 
of the reference FBC solar cell is presented in Fig. 4(b). Owing to the elimination of front 
layers’ parasitic absorption and the low reflectance, almost all of the incident high energy 
photons are absorbed by the CIGS layer. This leads to an improvement of Jph from 28.04 
mA/cm2 for the reference cell to 39.69 mA/cm2 for the IBC cell with optimal TCO (41.55% 
improvement). Using Eq. (3) to calculate ΔGreen for an optical thickness of 1120 nm (the 
peak-to-valley height of the textures plus the bulk thickness) shows that the IBC solar cell 
deviates from the benchmark by only 6.65%. 
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Fig. 4. a) Implied photocurrent density in CIGS layer (Jph-CIGS) as a function of width and 
height of TCO. b) absorptance and 1-R spectra of the IBC solar cell when WTCO = 1000 nm and 
HTCO = 320 nm. 

Even though the development of high aspect ratio textures on a CIGS layer is proven to be 
possible [56], this approach would need the partial removal of the absorber by ion 
bombardment [57] or wet etching [58]. This is in contrast with the photovoltaic (PV) market 
goal of increasing industrial throughput of CIGS PV technology by reducing material 
consumption [59-61]. In the following section, the development of the back-contacted solar 
cell with natural CIGS morphology is studied. 

3.3 IBC solar cell with as-grown absorber morphology 

According to our atomic force microscopy measurements for CIGS samples made at TNO 
[50], the lateral correlation length of the as-grown grains is about 330 nm [4,28]. This was 
included in the structure of a back-contacted CIGS solar cell model without antireflective 
textures (see Fig. 2). The natural roughness was modelled by introducing periodic truncated 
pyramids on the absorber bulk. Even though this is a simplification of the realistic device, the 
calibrated external quantum efficiency (EQE) and reflectance spectra sufficiently match the 
measured counterparts, confirming the validity of the assumption [28]. Note that the absorber 
volume in Figs. 1 and 2 are equal for fair comparison. In the absence of steep features at the 
front side for high light in-coupling, an alternative approach was employed. The thickness of 
passivating Al2O3 and antireflective MgF2 layers in a reference solar cell were optimized for 
minimal reflection. The optimization algorithm is discussed in more details in [4]. The 
resulting thicknesses for Al2O3 and MgF2 are 80 and 85 nm, respectively. 

Performing the same TCO optimization procedure as in the previous session leads to the 
results shown in Fig. 5. Jph-CIGS values higher than 38.8 mA/cm2 can be achieved for WTCO > 
950 nm and HTCO > 300 nm. The optimal combination of these parameters (WTCO = 1000 nm 
and HTCO = 320 nm) resulted in the absorptance and 1-R spectra plotted in Fig. 5(b). As it can 
be seen in such a figure, a small drop in absorptance occurs at short wavelength region due to 
higher reflection from the front side of the cell. In total, Jph-CIGS = 38.84 mA/cm2 is expected 
from the optimized cell, showing less than 0.9 mA/cm2 decrease in Jph-CIGS compared to the 
previous design. Considering cheaper and easier fabrication process of this approach, the drop 
in Jph-CIGS appears negligible. In this case, where the optical thickness is 750 nm, JGreen = 
42.11 mA/cm2, and therefore, according to Eq. (3), ΔGreen will be 7.7%. This value is still 
very small compared to the case of the reference cell for which ΔGreen = 33.4%. The Jph-CIGS 
obtained in this work is comparable to the Jsc of world record efficiency CIGS solar cell [62], 
[63], in which parasitic absorption is still not addressed and the absorber thickness is 
considerably thicker than that of our design. 
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These maxima are located at wavelengths 1020, 1070 and 1110 nm, indicated with red arrows 
in Fig. 6(a). It should be noted that each local maximum in CIGS absorptance is correlated 
with a local minimum in total reflectance. This means that as more photons are trapped in the 
solar cell bulk, less photons escape from the cell. At 1020 nm (Fig. 6(b)), the Fabry-Perót 
modes are the main components of the electric field, causing the light to mainly propagate in 
perpendicular direction with respect to the plane of incidence [64]. As the wavelength 
increases, the diffraction modes triggered by the rear dielectric/metal IBC arrangement (GZO 
/ MgF2 / Mo / MgF2) and coupled with waveguide modes inside the absorber bulk outweigh 
the Fabry-Perót modes. This phenomenon is clearly visible in Figs. 6(c) and 6(d), where 
waveguide modes are the dominant components of the electric field. 

Even though the CIGS absorptance might have a slightly different shape in the two IBC 
designs in the long-wavelength regime (see Fig. 4(b) and Fig. 5(b)), the total generated Jph in 
that part is not very different. For instance, for wavelengths between 900 and 1200 nm, the 
obtained Jph’s from the first and the second IBC structures are 7.09 and 6.62 mA/cm2, 
respectively. This is due to the limited capability of the absorber in absorbing close-to-
bandgap photons. Therefore, the higher intensity of the electric field in Fig. 6(d) does not 
necessarily mean that the absorber will be capable of absorbing all of the trapped photons. 

It should be noted that we also considered ITO as e-contact material in our models. In that 
case, due to the lower transparency of ITO material [26], less Jph-CIGS can be expected by the 
optimized structure. More importantly, the presence of indium in ITO contradicts our goal of 
decreasing indium usage and thus fabricating cost-effective CIGS solar cells. Hence, we 
excluded ITO from our proposed IBC structure. 

4. Conclusions 
CIGS with a low bandgap and high absorption coefficient, is a great candidate for thin-film 
solar cell applications. High parasitic absorption in front/back-contacted solar cell 
architectures hinders the full utilization of CIGS’s optical potential. In this work a back-
contacted CIGS solar cell was proposed. The assessment of electron- and hole-contacts’ band 
diagram shows well-functioning structure from electrical point of view. An IBC cell with 
antireflective textures and optimized TCO dimensions showed a potential 41.55% 
improvement in implied photocurrent density (Jph-CIGS) compared to a front/back-contacted 
reference cell. A simpler structure with as-grown CIGS morphology and optimized flat 
antireflection coating revealed a maximum Jph-CIGS value of 38.84 mA/cm2. This value 
deviates from the theoretical Green limit by only 7.7% and is comparable to the short circuit 
current density of the world record CIGS solar cell, albeit with significantly thicker absorber. 

Even though the fabrication of our proposed IBC structure in the current design might be 
complicated, eventually including a number of etching and lithography steps, we believe that 
this is an important step towards the development of high efficiency and cost-effective CIGS 
solar cells. More theoretical and experimental studies are needed to reach a balance between 
the cost and efficiency of such devices. 
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